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WHY COPY OTHERS? INSIGHTS FROM THE SOCIAL LEARNING STRATEGIES 

TOURNAMENT 

 
Rendell, L., Boyd, R., Cownden, D., Enquist, M., Eriksson, K., Feldman, M. W., Fogarty, 

L., Ghirlanda, S., Lillicrap, T. & Laland, K. N. 

 

SUPPLEMENTARY ONLINE MATERIAL 
 

Methods 

We held an open computer-based tournament to determine the most effective strategy for 

learning in a complex, changeable environment. To enter the tournament, applicants 

needed to devise a strategy – a set of rules that specified when an individual organism 

should perform each of the three moves in the game: (i) perform an established behavior 

from its repertoire (EXPLOIT), (ii) engage in trial-and-error learning (INNOVATE), or 

(iii) learn from other individuals (OBSERVE)1. 

 

Tournament simulation environment2 

The simulation environment was represented as a ‘restless multi-armed bandit’ 

encompassing 100 possible behavioral acts (represented arbitrarily by the integer’s 1-

100) and a payoff associated with each act. The payoff for each act was an integer drawn 

at random from an exponential distribution (λ=1; values were squared, then doubled, and 

finally rounded to give integers mostly falling in the range 0-50). Payoffs changed 

between rounds with independent probability pc, with new payoffs drawn at random from 

the same distribution. This information was kept deliberately vague to participants, so as 

to discourage overly specific solutions (see below). 

 

                                                 
1 The full rules of entry for the tournament are given in Appendix A. 
2 MATLAB® *.m files of the tournament simulation engine and the winning strategy can be found at 
http://lalandlab.st-andrews.ac.uk/ 
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Each simulation contained a population of 100 agents. Each agent possessed a 

behavioral repertoire, which was empty at the start of the agent’s life. An agent’s 

repertoire could subsequently only contain acts through some form of learning. In each 

round, agents could perform one of three possible moves, called INNOVATE, 

OBSERVE and EXPLOIT. These moves are summarised in Table S1, with further details 

below. The role of the entered strategies was to specify which of these three moves an 

agent should play in each simulation round, with optional reference to information, 

specified below, that was made available to that agent. Each agent was controlled by one 

of the entered strategies, assigned at the start of its life. Agents did not change strategy 

during their lives. 

 

Table S1: Move available to agents in the tournament simulation 

Move 

(represents) 

Information gained Payoff gained 

INNOVATE 

(asocial 

learning) 

Act and payoff (without error) randomly 

chosen from those currently unknown to the 

agent. 

None. 

OBSERVE 

(social 

learning) 

Act and payoff of nobserve demonstrators 

chosen at random from those playing 

EXPLOIT in the previous round. N(0, 

σpayoffError) error always added to payoff 

information. Incorrect, randomly chosen, act 

returned with probability pcopyActWrong.  

None. 

EXPLOIT 

(performing a 

behavior) 

Current actual payoff of chosen act. Current actual payoff 

of chosen act. 

 

Playing OBSERVE did not necessarily result in new behavior being learned. If no 

other agents played EXPLOIT in the last round, then nothing was learned. It was possible 

for an individual to OBSERVE an act already in its repertoire, in which case only the 
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payoff recorded for that act was updated in the agent’s behavioral repertoire. OBSERVE 

was error prone with regard to both act and payoff. OBSERVE returned a different act to 

that performed by the observed agent with probability pcopyActWrong, with the learned act 

selected at random from the 99 not being performed, although the payoff learned was still 

that of the observed agent. Independently, the returned payoff estimate was subject to 

normally distributed random error (rounded to the nearest integer) with mean 0 and 

standard deviation σpayoffError (with the returned payoff estimate lower bounded at 0). If an 

agent already had all 100 possible acts in its repertoire, it gained no new act from playing 

INNOVATE or OBSERVE and zeros were recorded in its history for that move. 

 

An individual could only EXPLOIT behavioral acts it had previously learned. 

When an individual chose to EXPLOIT an act, it received the current payoff specified in 

the environment. Note that this value could differ from the expected payoff held in the 

agent’s behavioral repertoire, for two reasons. Firstly, the payoff for an act could have 

changed in the rounds since it was learned or last exploited (with probability pc each 

round). Secondly, if the act was learned in an OBSERVE move, then the payoff could 

have been subject to error. When an agent played EXPLOIT, we assumed it could, by 

performing an act, update its knowledge of how profitable that act was, and store the 

updated information in its behavioral repertoire. 

 

We assumed agents could remember their own history of moves and payoffs, as 

well as their current behavioral repertoire. Along with the number of rounds the agent 

had been alive, this history and behavioral repertoire was the only information available 

to the entered strategies when deciding which move an agent should play.  

 

Evolutionary dynamics 

We modelled evolutionary change as a death-birth process. Within a simulation, agents 

died with probability 0.02 per round, giving an expected lifespan of 50 rounds. Dying 

individuals were replaced by the offspring of agents selected to reproduce from those 

surviving with probability proportional to the agent’s mean lifetime payoff P. We defined 

an agent’s P value to be the sum of all its payoffs from playing EXPLOIT during its life, 
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divided by the number of rounds it had been alive. The probability of individual z 

reproducing was Pz / ΣP, where ΣP was the summed mean lifetime payoff of the 

population in that round.   

 

Offspring usually carried their parent’s strategy, except for a small probability of 

mutation, in which case the offspring carried one of the other strategies available in the 

simulation. While the mutation rate we used (0.02) is obviously high relative to natural 

rates of mutation in eukaryotes, we found that reducing this rate does not qualitatively 

affect our outcomes, and the higher rate offers significant computational advantages in 

terms of time to equilibrium. 

 

Tournament structure rationale 

It was clear from the outset that the scientific validity of the tournament would hinge 

critically of the precise details of the game. For this reason, the lead organizers of the 

tournament (Laland, Rendell) recruited a committee of leading authorities in the field of 

social learning research and game theory to advise them on tournament structure and 

design (Boyd, Enquist, Eriksson, Feldman). The primary function of this committee was 

to ensure, as far as possible, that the tournament was set up in a sensible way, such that it 

generated relevant insights into an empirically meaningful problem, one that could not 

easily be resolved through trivial solutions. The tournament structure went through 

several major design iterations, over a period of 18 months, and was tested extensively at 

each stage through simulation, including in an independent laboratory (Ghirlanda), and 

through mini tournaments. At the end of this validation the organizers and committee 

were entirely satisfied that the tournament presented a challenging and non-trivial 

problem. 

 

We regarded it as important that the strategies be judged in a biologically 

meaningful context, such that effective strategies potentially shed light on social learning 

in humans and other animals.  For instance, it was critical that strategies be evaluated in a 

spatially and temporally varying simulation environment, where multiple behavioural 

options were available. At the same time, it was important that the rules and 
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specifications of the contest were simple enough to make interpretation of the outcome 

comprehensible, and to encourage the participation of entrants from a variety of different 

backgrounds. The chosen tournament structure reflects this compromise between validity 

and accessibility. 

 

We considered a variety of possible structures to the tournament, including the 

tracking of a single environmental state, spatially-explicit grid environments, and multi-

deme stepping-stone models drawn from population genetics. Our adoption of the 

‘restless multi-armed bandit’ (i.e. a range of possible behaviors, each with its own, 

changeable, payoff) has the advantage both of being a well-understood problem 

independently of social learning research (S1), and currently intractable to analytical 

optimisation, despite considerable effort on the problem (e.g. S2). This structure therefore 

provided a familiar, valid, but non-trivial problem for the basis of the tournament. 

 

Strategy evaluation Stage I: Round-robin pair-wise contests 

Strategies first took part in pair-wise contests against all other strategies. Each pair-wise 

contest consisted of 10 simulations in which agents performing strategy A were 

introduced (using the mutation process described above) into a population containing 

only strategy B, and the reciprocal 10 simulations in which B was introduced into A-

dominated populations. We adopted a reciprocal invasion approach to ensure our findings 

were robust to strategies’ initial frequencies. In each simulation, a population of the 

dominant strategy was introduced and run for 100 rounds without mutation so that agents 

could establish their behavioral repertoires. Mutation was then introduced, providing the 

second strategy the opportunity to invade, and simulations were run for a further 10,000 

rounds. The mean frequency of a strategy over the last 2,500 simulation rounds was its 

score for that simulation. Simulation scores were then averaged over the 20 simulations, 

and this average recorded as the contest score for that strategy in that contest. Strategies 

were then ranked on their average contest score once they had played against every other 

strategy. These simulations were run with the parameter set [pc=0.01, nobserve=1, 

pcopyActWrong=0.05, σpayoffError=1]. This stage involved 5,356 paired contests, with 107,120 

(5,356×20) individual simulation runs. 
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Although we initially planned to simply carry the 10 highest scoring strategies 

through to the next tournament phase, we found that this division cut the payoff 

distribution within a series of strategies (ranked 6 to 24) with relatively small differences 

in their scores such that the initial ranking could plausibly have been dependent on the set 

of conditions we happened to choose (Main text, Figure 1a inset). Since we wanted to be 

confident that the apparent success of the 10 best strategies was not due a chance match 

of any strategy to the specific single parameter set, we elected to run more pair-wise 

contests on the top 24 strategies across a range of conditions.  

 

We found it was computationally feasible to run a further 8 conditions for the 

subset of strategies ranking in the top 24 of the first set of contests; these conditions are 

set out in Table S2. Note that we did not vary the parameter σcopyPayoffError in these 

conditions, as we reasoned that the parameter pcopyActWrong would affect the accuracy of 

social learning in a similar manner but to a stronger degree; accordingly, to also vary 

σcopyPayoffError orthogonally would unnecessarily duplicate effort in exploring the effect of 

the accuracy of social learning as well as doubling the computation time required. We ran 

a single pair-wise run with two extra conditions, varying σcopyPayoffError from the initial 

condition above [pc=0.01, nobserve=1, pcopyActWrong=0.05, σcopyPayoffError=5], and [pc=0.01, 

nobserve=1, pcopyActWrong=0.05, σcopyPayoffError=10], but found that made no difference to the 

strategies that were eventually selected. For these further conditions we reduced the 

number of repetitions per contest to 3 symmetric repetitions (i.e. 3 runs with strategy A as 

invader and 3 runs with strategy B as invader) as opposed to the 10 such repetitions run 

for the initial pair-wise contest. We selected the value 3 based on Figure S1, which shows 

that the distribution of coefficient of variation values for each pair-wise contest does not 

change for more than 3 repetitions.  
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Table S2: Details of further conditions run for top 24 strategies 

Condition pc nobserve pcopyActWrong σcopyPayoffError 

1 0.001   1   0.01  1 

2 0.1   1   0.01  1 

3 0.001   1   0.1  1 

4 0.1   1   0.1  1 

5 0.001   6   0.01  1 

6 0.1   6   0.01  1 

7 0.001   6   0.1  1 

8 0.1   6   0.1  1 

 

 

These additional analyses required 13,248 further simulation runs (23×24×3×8). 

No strategy switched from the original pair-wise results by more than 11 places, and the 

average change in rank was 2.5 places, suggesting it was highly unlikely that any 

strategies outside the top 24 would have been elevated into the top 10. The extra 

conditions resulted in two strategies from the original best 10 (senescence and 

observe3ThenExploit) being dropped in favour of two others (livingdog and 

valueVariance) that had initially ranked 13 and 15 respectively. 
 

Figure S1: Boxplot of pair-wise coefficient of variation distributions by number of repetitions. 
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Strategy evaluation Stage II: Melee contests 

In each simulation, all ten of the strategies selected in Stage I competed simultaneously. 

Each simulation started with a population consisting purely of a simple strategy that did 

not use any social learning, but played INNOVATE on the first round of its life and 

subsequently played EXPLOIT continually with the single act that it acquired on the first 

round3. We used this strategy simply to avoid giving any of the ten competing strategies 

any advantage or disadvantage from being already established in the population. 

Mutation was introduced from round 1, providing the competing strategies with equal 

opportunity to invade. Simulations were run for 10,000 rounds, but mutation was turned 

off in the last quarter (i.e. rounds 7,500 – 10,000). The mean frequencies of each strategy 

over the last quarter of each run were recorded as the scores for each strategy in that 

simulation. Strategies were then ranked on their average score across all simulations.  

 

We ran two sets of conditions, which we termed systematic and random. For the 

systematic condition set, we selected a number of values for each of the four parameters, 

pc, nobserve, pcopyActWrong, and σcopyPayoffError (Table S3). Fifty simulations were run with each 

of the 280 possible combinations of these parameter values giving 14,000 simulations. To 

check that the results of this process were not unduly affected by the specific parameter 

values we chose, we also ran random conditions, where parameter values were chosen at 

random from statistical distributions weighted in accordance with the values chosen for 

the systematic conditions (Figure S2). We weighted these distributions toward lower 

values of pc, nobserve, and pcopyActWrong because we considered higher values of these 

parameters to be less biologically or ecologically plausible than lower ones. We selected 

1,000 unique sets of parameters values in this way and ran a single simulation with each 

set of values, giving a further 1,000 simulations. Systematic and random analyses gave 

identical returns on the ranked performance of the 10 strategies, computed across all 

simulations, based on their frequency in the last quarter of each simulation. Accordingly 

strategy scores were averaged over all 15,000 melee simulations to give the final scores. 

                                                 
3 This strategy was entered independently in the tournament as exploitOneInnovation. It did not progress 
past the pairwise phase, ranking 102nd. 
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Table S3: Details of further conditions run for top 10 strategies; values in bold are those used for the 

main pair-wise contest in Stage I. 

Parameter Values 

pc 0.001    0.005    0.01    0.05    0.1    0.2    0.4  

nobserve 1     2     6    12 

pcopyActWrong 0.01    0.05   0.1    0.25    0.5 

σcopyPayoffError 1 10  

 

 
Figure S2: Distributions of parameter values chosen for melee (Stage II). Blue bars are histograms of 

values chosen for the random conditions, red lines show values selected for systematic conditions. 

 
 

All simulations were run in the Matlab®/Octave computing environment, using 

both the UK National Grid Service (S3) and desktop computers. Entries could take the 

form of Matlab®/Octave code or prose pseudocode; in the latter case, the pseudocode was 

converted to real code (by Rendell). We guarded against coding errors by having each 

strategy coded by a second independent coder (Fogarty), and testing that each version 
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produced exactly identical results when given the same input sequences, including 

identical sequences of randomly-generated numbers when strategies made decisions 

stochastically. Strategies were restricted to take, on average, no longer than 25 times the 

duration of an example strategy provided in the rules to return a decision. No strategy 

failed this criterion, and there was no relationship at all between computation time and 

score in the pair-wise phase of the tournament (Figure S3). 

 
Figure S3: Strategy scores in pair-wise tournament phase plotted against the average per-round 

computation time, expressed as a multiple of the time taken by an example strategy. 

 
 

Information for entrants 

The full rules of entry for the tournament are given in Appendix A. Entrants were not 

informed of the exact nature of the payoff distribution (see below) and on the exact 

values of four simulation parameters, although we did provide the possible ranges of the 

latter. We deliberately omitted these details so that contestants would be required to think 

in as general terms as possible in designing their strategies. 

 

Statistical analyses 

We examined the factors that made a strategy successful in the pair-wise-contests (Stage 

I) using linear multiple regression and model selection, with score as the dependent 

variable. For each strategy, we calculated a range of possible predictors of a strategy’s 
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score (Table S4), and entered these into an all-possible-subsets model comparison 

procedure. We ran analyses both with all strategies and only the top 24 to see whether the 

same factors responsible for success in the broadest context were also important when 

competing only against relatively successful strategies. In each case, we first used the 

package ‘leaps’ in the statistical package R to return the five best models for each subset 

of predictors, selected by Mallow’s Cp (S4-6). We then selected from that set the model 

that minimised AIC (S7), although results were very similar when model selection was 

based on BIC. Finally, we calculated predictor effect sizes as beta weights using the 

package ‘yhat’ (S8). 
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Table S4: Predictors entered into model selection 

Predictor name Explanation 

Check central payoff? (Y=1, N=0) Categorical variable indicating whether a 
strategy checked any central tendency (e.g. 
mean) in the payoff values in the agent’s 
history, either from learning or EXPLOIT. 

Check mean EXPLOIT? (Y=1, N=0) Categorical variable indicating whether a 
strategy checked the mean payoff from 
playing EXPLOIT in the agent’s history. 

Estimate nObserve? (Y=1, N=0) Categorical variable indicating whether a 
strategy estimated the value of the 
parameter nObserve. 

Estimate pc? (Y=1, N=0) Categorical variable indicating whether a 
strategy estimated the rate of environmental 
change as given by the parameter pc. 

Flexible behavior? (Y=1, N=0) Categorical variable indicating whether a 
strategy’s choice of move was affected by 
the outcome of previous moves, or always 
followed a predetermined series of moves. 

Log of variance in rounds to EXPLOIT Pooled variance, across all agents with the 
strategy, in the number of rounds between 
the ‘birth’ of an agent with the strategy and 
the first time the agent played EXPLOIT 
(continuous measure). We took the log of 
this value as exploratory analysis showed a 
log-linear relationship with score. 

Mean rounds between learning moves Average number of rounds between any 
learning moves (OBSERVE or 
INNOVATE), across all agents with the 
strategy (continuous). 

Proportion of learning moves Average proportion of moves dedicated to 
learning (either OBSERVE or 
INNOVATE), across all agents with the 
strategy (continuous). 

Proportion of learning that is OBSERVE Average proportion of learning moves that 
were OBSERVE, across all agents with the 
strategy (continuous). 

Stochastic? (Y=1, N=0) Categorical variable indicating whether a 
strategy ever chose between actions 
stochastically, i.e. dependent on the draw of 
a random number. 
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Supplementary text: Detailed results 

The tournament attracted 104 entries from a broad range of academic disciplines 

(Anthropology, Biology, Computer Science, Engineering, Environmental science, 

Ethology, Management, Mathematics, Neuroscience, Philosophy, Physics, Primatology, 

Psychology and Sociology) as well as outside of academia, and from 16 different 

countries (Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Italy, 

Japan, Netherlands, Portugal, Spain, Sweden, Switzerland, UK and USA). A list of all 

submitted strategies and their placings in the tournament is found in Appendix B. 

 

Stage I 

The initial pair-wise evaluation round involved 5,356 contests containing a total of 

107,120 simulation runs. Strategy performance was unaffected by whether they were the 

invading or invaded strategy (Pearson correlation between invading and invaded scores, r 

= 0.9998, p < 0.0001). 

 

In the statistical analysis including all strategies, there were 17 models within 3 

AIC units of the best; no predictor present in the best model was absent in more than 6 of 

the 17, and no predictor absent in the best model was present in more than 8. When 

analysis was restricted to the best scoring 24 models, there were 12 models within 3 AIC 

units of the best; no predictor present in the best model was absent any of these models, 

and no predictor absent in the best was present in more than 3 of the other models, except 

for the categorical predictor specifying whether a strategy checked the mean payoff it had 

received from playing EXPLOIT in previous rounds. This predictor was retained in 7 of 

the 12 top models, but only 2 of the top 7. Fit diagnostics showed that the best models in 

both analyses had normally distributed and trend-free residuals, and both explained 

relatively large proportions of the data (adjusted R2 = 0.76 and 0.50 respectively). 

 

Statistical analysis of all 104 strategies returned a best model containing 5 

predictors of a strategy’s score, although not all were significant at α = 0.05 in that model 

(Main text, Table 1).  
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We found strong effects of “Proportion of learning that is OBSERVE” and  

“Variance in time to first EXPLOIT”, and moderate effects of “Proportion of learning 

moves” and “Average rounds between learning moves”, which are discussed in the main 

text. The categorical variable indicating whether a strategy estimated the rate of 

environmental change apparently had a positive effect, but high variability within 

categories meant that the mean effects were not significant at α = 0.05 (Figure S5a).  

 
Figure S5: Box plots showing scores for strategies that did or did not (a) estimate the rate of 

environmental change and (b) have flexible behavior in the sense that behavior was conditional on 

the move history or current repertoire of an agent. Data are from pair-wise contests. 

 
 

 

 When the same analysis was restricted to just the 24 top-scoring strategies a 

different, and reduced, set of predictors emerged (Table S5). The best fit model in this 

analysis was not able to explain as much variation as the analysis with all strategies. 
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Table S5: Best model for pair-wise strategy scores using top 24 strategies only. Adjusted R2=0.50. 

Predictor Effect size  

(β weight)

β S.E. t p(>|t|)

(Intercept) - 0.98 0.14 6.95 <0.0001

Flexible behavior? (Y=1, N=0) 0.69 0.34 0.13 2.75 0.0127

Proportion of learning moves -0.64 -2.74 0.78 -3.52 0.0023

Average rounds between learning moves -0.61 -0.01 0.01 -2.35 0.0298

Variance in rounds to first EXPLOIT* -0.47 -0.05 0.02 -3.11 0.0058

*We used the natural log of this predictor to give a better linear relationship 

 

The categorical variable indicating whether a strategy had flexible behavior was 

retained with the largest effect size, in place of the variable indicating whether a strategy 

estimated the value of pc (Figure S5b). The proportion of learning moves was retained 

with a large negative effect. The log of the variance in time to EXPLOIT was also 

retained with a significant negative effect, as in the model with all strategies. Two 

predictors present in the model with all strategies were dropped in this model – the 

proportion of learning moves dedicated to OBSERVE, and the categorical variable 

indicating whether a strategy estimated the rate of environmental change. Finally, the 

mean number of rounds between learning moves had a significant effect in both analyses. 

However, the effect is in opposite directions when considering data from all strategies, 

where there is an apparent positive relationship, compared to data from only the top 24 

strategies, where the effect is negative (Figure S6). Thus, when competing against other 

effective strategies, it was detrimental to leave too many rounds between learning moves. 
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Figure S6: Final score against the mean number of rounds between learning moves. Data from all 

pair-wise contests are labelled ‘All strategies’, data restricted to contests between the top 24 

strategies are labelled ‘Top 24 only’. Note that for the latter, the mean score is calculated from 

contests involving only those 24 strategies, so appear lower than might initially be expected. 

 
  

 

 

Stage II analysis 

The ten highest scoring strategies from the pair-wise phase then progressed to the melee 

phase, in which all ten strategies competed simultaneously in series of simulations across 

a broad range of parameter values. (Descriptions of the top 10 strategies can be found in 

Appendix C). Strategies were ranked according to their score averaged over all melee 

simulations. The highest scoring strategy in this phase, and therefore the tournament 

winner, discountmachine, was the same strategy that scored highest in the first, pair-wise, 

phase, and scored highest in both the random and systematic analysis of the melee. This 

strategy won convincingly, although with the second placed strategy, intergeneration, it 

formed a pair of strategies that performed markedly better than the other contenders 

(Figure S7).  
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Figure S7: Ranked overall strategy scores from melee contests, incorporating random and systematic 

melee conditions. Error bars are ± SEM, although not always visible as all SEMs<0.004 

 
    

 We found that all ten melee strategies were responsive to changes in the rate of 

environmental variation in that they all increased the amount of learning they did at 

higher rates of variation (Main text Figure 3a-b). Most strategies continued to increase 

the amount of learning as variation rates increased, although four did not, including the 

top two, in that they appeared to cap the amount of learning they did even as rates of 

environmental change continued to increase. The second placed strategy stands out has 

having the lowest learning rates of all the melee contenders. While all strategies 

continued to learn to some extent throughout the agent’s lives, the winner stood out by 

distributing learning almost equally across different phases of life (Main text Figure 3b). 

In contrast, the second placed strategy had the highest variance in learning rates, 

concentrating over 60% of its learning in the first third of the agent’s lives. This contrast 

goes some way to explaining the relative performance of the strategies in varying rates of 
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environmental change. When the environment is relatively static, low learning rates 

overall and a concentration at the beginning of life are advantageous to intergeneration, 

as the acquired information is less likely to change, while in changeable environments, 

the higher lifelong learning rates of discountmachine give it the upper hand.  

 

When learning, all melee strategies used OBSERVE at least 50% of the time, 

regardless of the conditions (Main text Figure 3c-d). There was a great deal of variation 

in how strategies changed their use of social and asocial learning as conditions varied. 

Notably, the top two ranked strategies, as well as two others (wePreyClan and 

dynamicAspirationLevel, ranked 4th and 6th respectively) played OBSERVE almost all 

the time, regardless of how much the environment was changing (Main text Figure 3c) or 

what the relative costs of social and asocial learning were (Main text Figure 3d). The 

other strategies showed a variety of responses to both variables, with some increasing the 

amount of social learning with increasing environmental variation and reduced cost of 

social learning, and others decreasing the amount of social learning under the same 

conditions. 

 

In general, successful strategies were able to target the timing of their learning 

moves effectively, increasing the amount of learning in periods immediately following 

significant drops in average lifetime payoff in the population caused by environmental 

change that reduced the payoff of a commonly exploited act, but also quickly dropping 

back to low levels of learning so as to maximize the amount of exploiting (Main text 

Figure 2c). To quantify this, we calculated the maximum absolute lagged Pearson 

correlation value between the time series of the average lifetime payoff in the population 

and the proportion of the population playing a learning move, for 200 of the random 

melee simulations. To compare with less effective strategies, we selected the strategy 

piRounds, that chose an action based on the digit of π that corresponded to the age of an 

agent (i.e. behaved at random) and which ranked 88 in the pair-wise phase, and the nine 

strategies ranked immediately above it, and calculated the same maximum correlation 

values for these strategies when they played 200 rounds under the same conditions.  
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For melee strategies, the largest absolute correlations were always negative 

(Figure S8), and always with a positive lag of 1 or 2, indicating a rapid increase in 

learning almost immediately after payoff drops. In contrast, the maximum correlations 

for the less effective strategies were less strong, not always negative and occurred at a 

more diverse range of lags. 

 
Figure S8: Boxplot of maximum absolute lagged Pearson correlation values between average lifetime 

payoff and proportion of learning in a population for effective (Rank 1-10) and less effective (Rank 

78-88) strategies. 

 
 

 The timing of learning was not, however, the only key to success. The winning 

strategy used social learning virtually exclusively – it would play INNOVATE only on 

the second round of an agent’s life if, after playing OBSERVE on the first, there was no 

behavior observed, i.e. no other agent in the population played EXPLOIT. That this 

reliance on social learning was crucial to its success is shown by the results of running 

the random conditions melee again but with a version of discountmachine re-coded to 

learn only by playing INNOVATE (Main text Figure 1b). Note that for this and 

subsequent analyses we compared scores only in the random conditions segment of the 

melee round, which is why the scores in Figures S7 and Figure 1b are different – the 
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former shows the score for the entire melee stage, the latter only for the random 

conditions segment. We did this for reasons of computation time, as the random 

conditions treatment only require 1,000 simulations, so we could perform multiple 

analyses in a reasonable time, while also making sure a reasonable proportion of the 

parameter space was covered. In this analysis, the innovate-only version places last 

against the other melee strategies, and, interestingly, other strategies change scores 

significantly, such that the second placed tournament strategy does not win and is instead 

overtaken by 4 other strategies. This result suggests that there are frequency-dependent 

effects present. Seemingly, discountmachine inhibits the fitness of other melee strategies 

when it relies exclusively on OBSERVE. 

  

Existing theory has suggested that high rates of social learning in a population can 

be detrimental to the average fitness of individuals in that population (S9-10). This would 

appear not to be the case with the melee strategies in the tournament (Figure S9a). We 

also looked at this relationship for strategies that had performed relatively poorly in the 

first, pair-wise, phase of the tournament, running 200 random condition melee rounds 

with the strategies that ranked 78-88 for comparison. We found that for poorly 

performing strategies the relationship between average individual fitness and the rate of 

social learning was strongly negative (Figure S9b), the complete opposite of the result for 

the melee strategies.  

 

 This contrast between our results and previous theory can be explained by noting 

that the tournament structure contained a mechanism by which social learning can result 

in new behavior entering the population, through the parameter pcopyActWrong, the 

probability that OBSERVE returns not the observed act, but another randomly selected 

act. When we ran 200 random condition melee rounds with the melee strategies but with 

pcopyActWrong set to zero, the positive correlation we found between average individual 

fitness and the rate of social learning amongst melee strategies disappears and becomes 

instead strongly negative (r = -0.30, p < 0.001; Figure S9c). Thus, when there is no copy 

error, high levels of social learning are associated with reduced average individual fitness 

in the population. 
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Figure S9: The average lifetime payoff in a population against the mean proportion of OBSERVE 

when learning, for (a) strategies in melee phase with pcopyActWrong > 0, (b) strategies ranked 78-88 in 

pair-wise phase with pcopyActWrong > 0, and (c) strategies in melee phase with pcopyActWrong fixed at 0. 

Results are means over the last quarter of 200 simulations across randomly selected conditions. 

 
 

 

 The effect of pcopyActWrong and the presence of frequency dependent effects is 

further illustrated by analysis of the performance of each strategy by itself. For all melee 

strategies, we ran single simulations containing only one strategy, using the same 

conditions as in the pair-wise tournament phase. We then ran the same simulations again 

but with pcopyActWrong set to zero, and compared results in terms of the average individual 

mean lifetime payoff in each population. Under the pair-wise conditions, we found a 

strong inverse relationship between the mean lifetime payoffs of strategies playing alone 

and their scores in the tournament melee – lower ranked strategies had higher fitness 

when playing alone than those ranked higher (Main text Figure 1d). The effect of setting 

pcopyActWrong = 0 is dramatic for those strategies that rely exclusively on OBSERVE, with 

the average individual payoffs in populations containing only those strategies dropping to 

one quarter or less of their previous values. This again suggests that copy error is a 

significant source of novel behaviour. However, the strategy that ranked 6th, 

dynamicAspirationLevel, while relying heavily on OBSERVE, did not do so exclusively 

(average proportion of learning moves that were OBSERVE was 0.995 across all melee 

simulations), and its performance when playing by itself was unaffected by setting 

pcopyActWrong = 0; thus in our model relatively small amounts of innovation can bring in 

enough new behavior to maintain payoff levels.                                                                                                  
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 The two most successful strategies, discountmachine and intergeneration, each 

had unique features: the former had a neural network, which it used to decide between 

learning and exploiting alternatives, while the latter deployed behavior designed to pass 

signals from older to younger agents regarding what should be considered a good payoff. 

Our analyses suggest, however, that it was not these unique features that were crucial to 

their success, as re-runs of the random conditions melee with versions of these strategies 

coded to remove these unique features produced results identical to the original 

tournament (Figure S10). We further investigated the role of the neural network in the 

success of the winner, discountmachine, by playing it against the version of itself without 

a neural network across 1,000 random melee conditions. We found that the complete 

version tended to do increasingly better than the reduced version as pc increased (linear 

regression of difference between the scores of the strategies against pc across 1,000 

conditions: β = 1.78, s.e. = 0.2, t = 8.97, d.f. = 998, p < 0.00001), indicating that under 

certain conditions the neural network did make a positive contribution to the strategy’s 

performance. 
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Figure S10: Ranked scores from tournament random conditions melee and from runs under the 

same conditions with the strategies discountmachine and intergeneration re-coded to remove, 

respectively, the neural network in discountmachine and the attempted intergenerational signalling 

of intergeneration.  

 
 

 

The winning strategy, discountmachine, also adopted a forward-looking approach 

to making decisions in a way not seen in any of the other strategies. It chose between 

EXPLOIT and OBSERVE by using the closed form of a geometric series to compare the 

expected payoff gains from each move. It considered the gains expected from either 

exploiting the best act currently known until death or a change in payoff, or observing 

once and then exploiting the expected observed payoff, again until death or a change in 

payoff. The strategy chose to play OBSERVE if 
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where wmax is the maximum of the expected payoffs currently available in the agent’s 

repertoire, Oest is an estimate of the expected payoff of an observed act calculated simply 



 
 

 25

as the mean of all the observed payoffs in the agent’s history, and d is a ‘discounting’ 

factor given by the product of the probability the agent will be alive in the next iteration 

and the agent’s current estimate of pc, or 

 

( )( )deathest ppd −−= 11 .        (3) 

 

In a further analysis, we wanted to explore how robust our findings were to the 

assumption that OBSERVE revealed information about the payoff of a behaviour as well 

as the behaviour itself. To do this we ran the random conditions melee a further time, 

devaluing information about social learning payoffs by making payoff observation 

extremely unreliable (setting sigma, the standard deviation of payoff observation error, to 

50, when payoffs themselves are generally in the range 0-50). Under these conditions 

OBSERVE essentially provides no information about payoff. Nonetheless, while the 

tournament result is altered in the sense that a different winner emerges, the new winning 

and second-place strategies, which ranked 4th and 6th in the tournament proper, also use 

social learning in >95% and >97% of all learning moves respectively (Figure S11). Thus 

the success of social learning in the tournament does not depend on the ability to observe 

demonstrator payoffs.  
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Figure S11: Ranked scores from tournament random conditions melee and from runs under the 

same conditions except with σpayoffError set to 50 so as to make the OBSERVE move uninformative 

with regard to the payoffs of the learned behaviour. 

 

 
 

 

We also explored the extent to which the filtering of adaptive information by 

demonstrators underpinned the success of social learning in the tournament. We did this 

by running an alternative simulation model in which OBSERVE returned a behavior 

chosen at random from a demonstrator’s repertoire with the behaviour the demonstrator 

had chosen to exploit removed, thereby preventing the filtering of information by rational 

agents choosing to exploit their best behaviour. We ran a series of such modified 

simulations in which the tournament winner and a version of itself altered to learn only 

by INNOVATE played against each other, together with the exploitOneInnovation 

strategy used to initiate simulations in the melee phase of the tournament. We 

systematically varied the rate of environmental change (pc) across simulations. Five 

simulations were run at each level of pc, and the other parameters were fixed at nobserve=1, 

pcopyActWrong=0.05, and σpayoffError=1, identical to the first phase of the tournament. The 

results showed that, in contrast to Figure 5 (main text), discountmachine’s innovating 
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cousin generally dominated the population irrespective of the rate of environmental 

change (Figure S12). A second analysis, using simulations in which OBSERVE returned 

a behavior chosen at random from a demonstrator’s repertoire with the behaviour the 

demonstrator had chosen to exploit retained, also dramatically reduced the range over 

which social learning prospered, restricting this to highly stable environmental 

conditions. These results clearly demonstrate that the filtering of information by informed 

individuals is crucial to the success of social learning. In the absence of this filtering, 

social learning is in fact costly enough, through its associated errors and propensity to fail 

to introduce new behaviour to an agent (which occurred at a rate of 53% of OBSERVE 

moves in the first phase of the tournament), to be selectively disadvantaged. 
 

 

Figure S12: Results of a series of simulations in which the tournament winner played against a 

version of itself altered to learn only by INNOVATE in a model where OBSERVE returned a 

behaviour selected at random from a demonstrator’s repertoire. Five simulations were run at each 

level of pc. 

 
 

 We are confident that it is this information filtering which underpins the success 

of social learning, and not our assumption that copying errors always return some 

behaviour, because of the results of a further set of simulations that we ran mirroring 
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those described above. In this case, the OBSERVE move functioned as in the original 

tournament – it returned the behaviour being exploited by the demonstrator, so that 

filtering could work – except that in the event of a behavioural copying error, it returned 

nothing, rather than a behaviour randomly selected from those not observed. We again 

pitted discountmachine against its innovating cousin across a range of pc values, fixing 

the parameter pcopyActWrong at 0.05, as it had been in the first tournament phase. The result 

showed almost no difference compared to those obtained with copying error returning a 

random behaviour (Figure S13, compared to Figure 5 in the main text). These results 

demonstrate how robust our principal findings are to changes in the assumptions 

underlying our simulation model. 

 
Figure S13: Results of a series of simulations in which the tournament winner played against a 

version of itself altered to learn only by INNOVATE in a model where OBSERVE returned no 

behaviour in the event of a copying error (rather than a randomly selected behaviour as in the 

original tournament). Five simulations were run at each level of pc. 
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Appendix A: Tournament rules of entry 
 

Social Learning Strategies Tournament 
 

Rules for entry 
 

Kevin Laland and Luke Rendell, University of St Andrews 
4th January 2008 

 
We are holding an open, computer-based, tournament to determine the most effective 
social learning strategy or strategies, as part of the EU ‘Cultaptation’ project. The 
author(s) of the winning entry will receive a cash prize of €10,000. This document 
contains background information on the rationale for the tournament, a description of 
how the tournament will be run, and technical details of how to enter. It is designed to 
provide all the necessary information needed by anyone wishing to enter the tournament. 
The primary contact for all issues regarding entries and any queries not covered here is 
Luke Rendell (ler4@st-andrews.ac.uk). 

 
"This tournament is a wonderful opportunity to advance our understanding of the 
evolution of social learning, and I was glad to have been able to give advice about the 
rules. It has my wholehearted support and I hope that as many people as possible will 
have a go." 

Robert Axelrod, University of Michigan 
 

THE TOURNAMENT: BACKGROUND AND OBJECTIVES 
 
Introduction 
In recent years there has been growing interest (spanning several research fields, but 
especially economics, anthropology and biology), in the problem of how best to acquire 
valuable information from others. Mathematical and computational solutions to this 
problem are starting to emerge, often using game-theoretical approaches. We judge that 
the time is now right for a tournament, inspired by Robert Axelrod’s famous Prisoner’s 
Dilemma tournament on the evolution of cooperation (S11), but with the objective of 
establishing the most effective strategies for learning from others. We have received 
funding to organize such a tournament from the European Commission as part of the EU-
NEST ‘Cultaptation’ project (www.intercult.su.se/cultaptation/). We hope that the 
competition will increase understanding of, and stimulate research on, social learning 
strategies, as Axelrod’s tournament did for research on the evolution of cooperation.  
 
Background 
It is commonly assumed that social learning is inherently worthwhile. Individuals are 
deemed to benefit by copying because they take a short cut to acquiring adaptive 
information, saving themselves the costs of asocial (e.g. trial-and-error) learning. 
Copying, it is assumed, has the advantage that individuals do not need to re-invent 
technology, devise novel solutions, or evaluate environments for themselves. Intuitive 
though this argument may be, it is flawed (S9-10, 12-13).  Copying others per se is not a 
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recipe for success. This is easy to understand if social learning is regarded as a form of 
parasitism on information (S13): asocial learners are information producers, while social 
learners are information scroungers. Game-theoretical models of producer-scrounger 
interactions reveal that scroungers do better than producers only when fellow scroungers 
are rare, while at equilibrium their payoffs are equal (S14). Similarly, theoretical analyses 
of the evolution of social learning in a changing environment (Se.g. 9, 10, 12, 15) reveal 
that social learners have higher fitness than asocial learners when copying is rare, 
because most ‘demonstrators’ are asocial learners who will have sampled accurate 
information about the environment at some cost. As the frequency of social learning 
increases, the value of copying declines, because the proportion of asocial learners 
producing reliable information appropriate to the observer is decreasing. An equilibrium 
is reached with a mixture of social and asocial learning (S16). These mathematical 
analyses, together with more conceptual theory (Se.g. 17), imply that copying others 
indiscriminately is not adaptive; rather, individuals must use social learning selectively, 
and learn asocially some of the time. Natural selection in animals capable of social 
learning ought to have fashioned specific adaptive social learning strategies that dictate 
the circumstances under which individuals will exploit information provided by others 
(S9, 18-20). At present, it is not clear which social learning strategy, if any, is best. The 
tournament has been set up to address this question. 
 
Objective for entrants 
To enter the tournament, you need to devise a strategy – a set of rules that specify when 
an individual organism should perform an established behaviour from its repertoire 
(EXPLOIT), when it should engage in trial-and-error learning (INNOVATE) and when it 
should learn from other individuals (OBSERVE) in deciding how to behave in a spatially 
and/or temporally variable environment. Performing the right behaviour is important, as 
fitness depends on how well behaviour is matched to the current environment. However, 
learning is not free, and fitness costs are imposed each time an individual learns for itself, 
or samples the behaviour of other individuals in its environment. For the purposes of the 
tournament, organisms will be assumed to know their own individual histories of 
behaviour and the fitness payoffs they received.  
 
Strategies will be tested in a computational simulation framework. The specification of 
the simulations, details on how to enter, and detailed tournament rules are given in the 
technical details section below. Entrants should ensure they are familiar with this 
material, as the details given are crucial in ensuring that your strategy will be considered 
in the tournament.  
 
Strategy evaluation 
Strategies will take part in a two-stage competition; this is summarised here and full 
details are provided in section 2 below. 
 
Stage 1: Strategies will take part in round-robin contests between all pairs of entered 
strategies. A contest, say between strategies A and B, involves exploring whether strategy 
A can invade a population containing only strategy B, and vice-versa. Each contest will 
involve several repeated simulations, with each strategy as the invader 50% of the time. 
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In each simulation, after a fixed number of iterations, the frequency of each strategy (that 
is, the proportion of the population with that strategy) will be recorded, and the average 
frequency across repetitions will be the score of that strategy in that contest.  
 
Stage 2: At least the first ten highest scoring strategies will then be entered into a melee 
in which all strategies compete simultaneously in a range of simulation conditions. After 
a fixed number of rounds, the frequency of each strategy will be the score for that 
strategy. The procedure will be repeated and the strategy with the highest average score 
deemed the winner. Participants should therefore try and construct their strategies so that 
they are likely to work well under most conditions. 
 
Committee 
The tournament will be organised and run by Kevin Laland and Luke Rendell, both of the 
University of St Andrews. A committee has been formed to oversee the running of the 
tournament, and formally adjudicate when necessary, to ensure that the contest is run 
transparently. The committee is composed of the organizers plus the following persons, 
all of whom have expertise relevant to the tournament: 
 
Robert Boyd, University of California, Los Angeles 
Magnus Enquist, University of Stockholm  
Kimmo Eriksson, Mälardalen University 
Marcus Feldman, Stanford University 
 
This committee has been extensively involved in designing of the tournament; we are 
also very grateful to Robert Axelrod of the University of Michigan for providing 
important advice and support with regard to the tournament design. 
 
TECHNICAL DETAILS 
 
1. Simulation specifications 
Each simulation will contain a population of 100 individuals, and run for up to 10,000 
rounds4. A single round will consist of the following computational steps: 
 
 (i) Individuals are selected sequentially to choose a move (see below) until all 

individuals have played. 
 (ii) Individuals reproduce with probabilities proportional to their average lifetime 

payoffs. 
 (iii) The environment changes. 
 
1.1 Environment and behaviour  
1.1.1 The environment will be represented as a ‘multi-arm bandit’ wherein actors select 
from a range of possible behavioural acts and receive a payoff associated with that act. 
There will be 100 possible acts, and the payoff for each act will be chosen at the start of 
each simulation from a distribution with many relatively small payoffs and some 
                                                 
4 If it is found that results are identical for shorter simulation runs then we may reduce this number for 
computational convenience. 
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relatively large ones. Therefore the environment can be represented a table with two rows 
associating behavioural acts with payoffs, for example: 
 

Act: 1 2 3 4 5 … 100 
Payoff: 4 0 17 1 7 … 3 

 
1.1.2 The environment is not constant, and the payoff associated with a given behavioural 
act will change between each round of the simulation with a fixed probability, pc. There is 
no association between payoffs for acts before and after the environment changes - the 
new payoff will be chosen at random (from the same distribution used in 1.1.1). The 
payoff for each act will change independently of the others, so that pc also represents the 
average proportion of payoffs that change in each round. In the round-robin stage of the 
tournament, pc will initially be fixed to a single value drawn from the range between 
0.001 and 0.4, but we may test multiple levels if computational constraints permit. In the 
melee stage, we will run simulations with varying levels of pc, drawn from the range 
[0.001-0.4]. 
 
1.1.3 The simulations will contain a single population of 100 individuals, representing a 
focal deme embedded in a meta-population. Each individual will have a behavioural 
repertoire, containing a subset of the acts from the table specified above. Individuals are 
born naïve; they have an empty repertoire. Each individual’s repertoire can subsequently 
contain only those acts, and knowledge about their payoffs, that are acquired through 
some form of learning (see below). Note that environmental change means that the payoff 
recorded for a given act relates to when the act was learned, and if the payoff for that act 
has subsequently changed (see 1.1.2 above), then the payoff level that the individual has 
recorded in its repertoire will be wrong. 
 
1.2 Moves 
1.2.1 Participants must specify a set of rules, henceforth a ‘strategy’, detailing when 
individuals should perform each of three possible moves. The options are: 
 
1. INNOVATE (individual selects a new act at random from those outside its current 

repertoire, and learns that act and its payoff) 
2. OBSERVE (individual selects another agent(s) at random, learn its (or their) act(s) 

and acquire an estimate of the relevant payoff or payoffs) 
3. EXPLOIT (individual performs a specified act from its repertoire and reaps the 

payoff) 
 
1.2.2 INNOVATE is equivalent to trial-and-error learning, and does not guarantee an 
improvement in available payoffs. INNOVATE selects a new act at random, from those 
acts not currently present in the individual’s repertoire, and adds that act and its exact 
payoff to the behavioural repertoire of the individual. If an individual already has the 100 
possible acts in its repertoire, it gains no new act from playing INNOVATE. 
 
1.2.3 OBSERVE is equivalent to social learning. OBSERVE selects one or more other 
individuals at random, and observes the act(s) they performed in the last round, and an 
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estimate of the payoff(s) they received. This knowledge is then added to the observing 
individual’s repertoire. The number of other individuals sampled when playing 
OBSERVE is a parameter of the simulation, termed nobserve. In the pair-wise tournament 
phase nobserve=1; in the second phase we will run further conditions with nobserve>1. Note 
that individuals playing OBSERVE sample agents solely from among the subset that 
played EXPLOIT in the last round. If no individual played EXPLOIT in the last round 
then nothing is learned (see 3.5 below). Note also that it is possible for an individual to 
OBSERVE an act already in its repertoire, in which case only the payoff recorded for that 
act is updated.  
 
1.2.4 Social learning is error prone with regard to both act and payoff. With a probability 
fixed to a single value between 0 and 0.5, the behavioural act returned by OBSERVE will 
not be that performed by the observed individual, but rather an act selected at random. 
Furthermore, the returned payoff estimate will be μ + ε, where μ is the actual payoff of 
the observed individual and ε is a normally distributed random variable rounded to the 
nearest integer, with a mean of 0 and the standard deviation fixed to a single value 
between 0 and 10 (if ε<0 and |ε|>μ then the payoff estimate will be set to 0). These errors 
could represent the observation of migrants performing acts that are inappropriate in the 
current environment and/or mistakes in observational learning. 
 
1.2.5 Individuals remember their own history of moves and payoffs, so strategies can 
access this information. Strategies can also, if desired, use this knowledge to update the 
payoffs stored in individual’s repertoires over and above the updating described in 1.2.2-
4. 
 
1.2.6 EXPLOIT is the only move that results in a direct payoff to the acting individual 
(EXPLOIT here does not mean that another individual is taken advantage of, only that an 
individual is exploiting its knowledge). An individual can only EXPLOIT acts it has 
previously learned. When an individual chooses to EXPLOIT an act, the payoff it 
receives is used to update the payoff recorded in its repertoire (that is, we assume an 
individual can, by performing an act, update its knowledge, stored in its behavioural 
repertoire, of how profitable that act is). 
 
1.3 Evolutionary dynamics: Lifespan, fitness and reproduction 
1.3.1 Evolutionary change will occur through a death-birth process. Individuals die at 
random, with probability of 0.02 per simulation round giving an expected lifespan of 50 
rounds, and are replaced by the offspring of individuals selected to reproduce with 
probability proportional to their mean lifetime payoffs. For individual z, 
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where Pz is the mean lifetime payoff of individual z (that is, the sum of its payoffs from 
playing EXPLOIT divided by the number of rounds z has been alive) and the 
denominator is the summed mean lifetime payoff of the population in that round.   
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1.3.2 Offspring are behaviourally naïve: they have no behavioural acts in their repertoire 
and no knowledge of payoffs. Unless mutation occurs, offspring inherit the strategy of 
their parents. Mutation will occur with probability 1/50, and when it does, the offspring 
will have a strategy randomly selected from the others in that simulation. These 
mutations are how other strategies will first arise in a population initially containing only 
a single strategy. Mutation will not occur in the last quarter of each melee simulation (see 
2.2 below). 
 
2. Running the simulations 
Details of how the simulations will run and how scores will be recorded in each 
evaluation stage are as follows: 
 
2.1 Stage 1 (Pairwise contests) 
Strategies will take part in round-robin contests against all other strategies. A contest 
involves each strategy invading a population of the other strategy. In a given simulation, 
a population of the dominant strategy will be introduced, and run for 100 rounds to 
establish behavioural repertoires. At this point, mutation will be introduced, providing the 
second strategy the opportunity to invade. Simulations will then run for up to a further 
10,000 rounds. Each pairwise contest will be repeated 10 times with strategy A as the 
invader and 10 times with strategy B as the invader. The mean frequencies of each 
strategy in the last quarter of each run (i.e. the last 2,500 rounds in a 10,000 round run) 
will be averaged over the 20 repetitions. This average will then be recorded as the score 
of that strategy in that contest. Strategies will be assessed on their total score once every 
strategy has been tested against every other strategy.  
  
2.2 Stage 2 (melee) 
Simulations will start with an initial population consisting of individuals with a simple 
asocial learning strategy (INNOVATE once and then EXPLOIT on every subsequent 
move). Every time an individual reproduces, it has a 1/50 probability of mutating to a 
strategy chosen at random from the pool of 10 winners from stage 1. However, there will 
be no mutation in the last quarter of the simulation so that mutation does not unduly 
influence results when strategies have similar fitnesses. After 10,000 rounds, the mean 
frequency of each strategy in the last quarter of the simulation will be recorded as the 
score for that strategy. In addition to manipulating pc, we will also vary the error rates 
associated with OBSERVE (the probability of learning an incorrect act will be drawn 
from the range [0 -0.5], and the standard deviation of ε, the error distribution of payoff 
observations, will be drawn from the range [1-10]), and the number of individuals 
observed for each OBSERVE move (nobserve will be drawn from the range [1-6]). 
Simulations will be repeated 100 times for each of the conditions, and the strategy with 
the highest average score will be deemed the winner. The exact number of conditions we 
test will depend on computational constraints. 
 
3. How to enter 
3.1 Strategies will take the form of computer code functions that take the data specified 
below as arguments and return a decision on which move to play. An example strategy is 
given below. Strategies can be submitted as a Matlab function (using only those 
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commands available in the base installation, excluding toolboxes), and/or ‘pseudocode’ 
(that is, linguistic instructions breaking down how decisions are made into a series of 
mathematical and logical operations that can each be directly translated into a single line 
of computer code5). If submitted as Matlab code, a pseudocode version should also be 
provided, to facilitate debugging. In all cases the code should be straightforward to 
translate between the formats. We provide in section 3.9 below an example strategy in 
both Matlab and pseudocode form and refer to that strategy by line number in the 
following descriptions. 
 
3.2 The strategy function should return an integer number representing the individual’s 
move in this round (here termed move), and a 2-row array representing their behavioural 
repertoire (here termed myRepertoire).  
 
3.3 To play INNOVATE, move should be returned as -1; to play OBSERVE, it should 
be set to 0. Any positive integer greater than 0 will be interpreted as playing EXPLOIT, 
and the value of move will specify which behavioural act to perform (i.e. an integer 
value equal to one of the acts in the individual’s behavioural repertoire). This act must be 
present in the individual’s repertoire. If any individual tries to EXPLOIT an act not in its 
repertoire then it gets nothing for that round – no payoff and no addition to the 
behavioural repertoire. On the assumption that such attempts are mistakes in strategy 
algorithms, we will, for strategies submitted sufficiently before the deadline (see rules 8 
and 11 below), attempt to contact the entrant(s) and invite them to revise their strategy, 
provided they do so before the entry deadline expires. 
 
3.4 Each individual has access to its own behavioural repertoire. Strategies will be 
provided with this information in the form of a 2 by n array, where n is the number of 
acts in the repertoire, the first row of the array represents the acts themselves and the 
second row their payoffs. We assume that an individual can remember what it did over its 
lifetime, and how long it has been alive. Thus strategies will be provided with 
information on age, moves, acts exploited or learned, and the associated payoffs. 
 
3.5 Strategies will receive the above knowledge in the form of three variables: 
roundsAlive, myRepertoire and myHistory. An individual that has survived 5 
model rounds might receive the following data: 
 
roundsAlive = 5 Number of previous rounds this 

individual has survived. 
 

 
myRepertoire = [ 19 2  64 

3  7  6 ] 
 

 
The individual’s behavioural repertoire, 
containing three acts: 19, 2, and 64 (first 
row) with, according to the individual’s 
current knowledge, payoffs of 3,7 and 6 

                                                 
5 For an example, see Mangel & Clark (2000) Dynamic state variable models in ecology. Oxford 
University Press, e.g. p55. 
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respectively (second row).  
 

 
myHistory = [ 1  2  3  4  5 

0 -1  0  2  2 
2  19 64 2  2 
8  3  6  7  7]

 

 
Previous moves and their results – the 
first number in each column is the round 
to which that column pertains, the second 
is the move played (-1 for INNOVATE, 0 
for OBSERVE, >0 for EXPLOIT), the 
third is the act learned (if OBSERVE or 
INNOVATE were played in that round) 
or exploited (if EXPLOIT was played), 
and the fourth is the payoff learned 
(OBSERVE or INNOVATE) or collected 
(EXPLOIT).  
 

 
In this example case, nobserve = 1. In its first model round, this individual played 
OBSERVE. As a result, it added act 2 to its repertoire and learned that this act returned a 
payoff of 8. In the second round it played INNOVATE, and added the act 19 with payoff 
3 to its repertoire. In the third round it played OBSERVE and learned the act 64 with 
observed payoff 6. In rounds four and five, this individual played EXPLOIT, performed 
act 2, and received a payoff of 7. Note that its actual payoff received for act 2 was not 
exactly equal to the payoff learned for act 2 (when playing OBSERVE on the first round), 
because of the error in social learning (see 1.2.4).  
 
Note also that in the case of new individuals, there will be no data – all the values shown 
above will be empty (i.e. of zero length) and if your strategy uses these inputs it should 
specify what to do in that case (and not crash!). The example strategy given below is 
robust to this as it specifically checks if roundsAlive>1 (see section 3.9, line 2 of the 
MATLAB code).  
 
3.6 Note that in above case, nobserve = 1. If nobserve = 3, for example, then the myHistory 
variable might look like this: 
 

myHistory = [ 1  1  1  2  3  3  3  4  5 
0  0  0 -1  0  0  0  2  2 
2  86 10 19 64 2  0  2  2 
8  6  1  3  6  7  0  7  7] 

 
Here, each OBSERVE move is represented by nobserve (=3) columns in the myHistory 
variable, highlighted in bold. On the first OBSERVE move (round 1), the individual 
observed acts 2, 86 and 10 with payoffs of 8,6 and 1 respectively. On the second 
OBSERVE move (round 3) it observed two acts – 64, and 2 again. Note that there are 
two estimates here for the payoff associated with act 2 (8 in round 1, 7 in round 3) – these 
differences are due to the error in observing payoffs associated with OBSERVE (see 
1.2.4 above). In the case that fewer than nobserve individuals play EXPLOIT in the 
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previous round, then some information returned by OBSERVE will be set to zero, as is 
shown for the underlined data from round 3 (zeros will also be returned if an individual 
that already has 100 acts in its repertoire plays INNOVATE). The behavioural repertoire 
for this individual in this case would contain acts 2, 86, 10, 19 and 64. 
 
3.7 Strategies can choose to use their own rules to update their current knowledge of 
payoffs in the myRepertoire variable. However, strategies that do this must only 
change the second row of the matrix; the simulation engine will check that the repertoire 
of behaviours has not been altered. Strategies that do not update payoffs should return the 
myRepertoire array unchanged (this will happen automatically if the syntax used in 
the first line of the example strategy below is used). Payoff updates resulting from 
observing a behaviour already in the repertoire, or from exploiting a behaviour for which 
the payoff has changed, will be carried out automatically by the simulation program. 
 
3.8 There are some rules that relate directly to the form of strategies; these are given 
below but also appear in the general tournament rules at the end of this document. 
 

(1) There is no limit to the length of the function, but it cannot, on average, take more 
than 25 times as long as the example strategy, given in section 3.9, to reach a 
decision. If, on completion of the pair-wise tournament, this is found to be the 
case for your strategy, then it will not be eligible to win the tournament. However, 
if it proves to be an effective strategy, we may still discuss it in our reports of the 
tournament. 

 
(2) Your strategy cannot access the disk or memory storage of the computer in any 

way beyond the information provided as input.  
 
(3) Strategies playing EXPLOIT must specify which act to use from their repertoire. 

This act must be present in the individual’s repertoire. If any strategy returns acts 
not in the repertoire then on the assumption that such attempts are mistakes in 
strategy algorithms, provided the strategy submitted sufficiently before the 
deadline we will attempt to contact the entrant(s) and invite them to revise their 
strategy, provided they do so before the entry deadline expires. 

 
(4) Strategies modifying their own behavioural repertoires to update the stored 

payoffs can alter only those payoffs and not the list of acts stored. If any strategy 
attempts to do this, the same rules as in (3) will apply. 

 
(5) We reserve the right to edit code for computational efficiency, but we will notify 

entrants if this occurs and they will be given the opportunity to check that the 
operation of their strategies has not been compromised. 

 
(6) Strategies must be accompanied by both brief prose description of how they are 

intended to function and, if submitted as computer code, a ‘pseudocode’ version. 
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3.9 We provide below an example strategy to illustrate what is expected of entrants. This 
strategy is called ‘copy when payoff decreases’ (here given the function name ‘cwpd’). It 
starts by playing INNOVATE, and then EXPLOIT with the behaviour it learns. In 
subsequent rounds, it calculates the mean payoff the individual has received during its 
life, and if the last EXPLOIT returned less than that average, it plays OBSERVE and then 
EXPLOIT with the highest-payoff behaviour in its repertoire. This example illustrates 
how strategies must be prepared to handle the start of an individual’s life, when it has no 
acts in its repertoire, and how strategies can change as individuals survive over several 
rounds. 
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Matlab version (text in green are comments to aid interpretation): 
 
 1 function [move, myRepertoire] = cwpd(roundsAlive, myRepertoire, myHistory) 

 2  if roundsAlive>1; %if this isn’t my first or second round… 

 3 myMeanPayoff = mean(myHistory(4,(myHistory(2,:)>0))); %mean payoff from EXPLOIT 

 4 lastExploit = find((myHistory(2,:)>0),1,’last’); %find last EXPLOIT 

 5 lastPayoff = myHistory(4,lastExploit); %get the payoff from last EXPLOIT 

 6  lastMove = myHistory(2,find((myHistory(1,:)==roundsAlive-1),1,’first’)); %find 
last move  

 7 if (lastMove==0) || (lastPayoff>=myMeanPayoff) %if lastMove was observe or 
lastPayoff at least as good as myMeanPayoff then EXPLOIT 

 8 rankedR_Matrix = sortrows([myRepertoire’],-2); %rank acts by payoffs 

 9 move = rankedR_Matrix(1,1); %perform the act with best payoff  

10 else %otherwise 

11 move = 0; %OBSERVE 

12  end 

13 elseif roundsAlive>0; %if this is my second round… 

14 move = myRepertoire(1,1); %only have one behaviour from INNOVATE, so use that 

15 else 

16 move = -1; %if this is my first round, then INNOVATE  

17 end 

 
Pseudocode version: 
 
copy_when_payoffs_decrease: 

1. If roundsAlive=0 then INNOVATE (move=-1) 

2. If roundsAlive=1 then EXPLOIT with behaviour learned in first round (move = first 
value in myR) 

3. If roundsAlive>1 then: 

4. Calculate my average myP value when myM>0, i.e. my average payoff when EXPLOITing, 
call it myMeanPayoff 

5. Find out when I last EXPLOITed, and store the payoff from that EXPLOIT as 
lastPayoff 

6. Find what my last move was, store as lastMove 

7. If lastPayoff<myMeanPayoff and lastMove<>0 (not OBSERVE) then OBSERVE (move=0) 
otherwise EXPLOIT by ranking acts by payoffs and choosing the highest ranking act 
(move=rankedActs(1)) 

 
 
4. Tournament Rules 
 

1. Entry into the tournament must be accompanied by explicit acceptance of these 
rules. 

 
2. The decisions of the committee shall in all cases be final and binding. 

 
3. Anyone may enter the tournament, with the exception of current members of 

Kevin Laland’s research group, and members of the committee. Students of 
committee members are permitted to enter, but the committee will not be 
informed of entrant’s identities if they are asked to adjudicate specific issues. 
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4. Entrants may be single individuals, or collaborative groups. In the latter case, 
groups must select a corresponding entrant who will be the sole point of contact 
for the tournament organisers and the only person with whom the organisers will 
discuss that entry, and also provide a list of the group members. Entrants may 
submit only one strategy, and individuals may only participate in one group entry.  

 
5. Only entries received by 1700 GMT on the closing date, 30th June 2008, will be 

accepted, and no further modification of entries is permitted after this date. 
Entrants are strongly advised to submit their strategies well before this time so 
that the organisers can check the code and inform entrants of any problems before 
the final closing date (see 8 and 11).  

 
6. All entrants agree to the content of their submission being made public as part of 

the communication of this research exercise, although entrants can choose not to 
have their name associated with their entry. 

 
7. There is no limit to the length of the function, but it cannot, on average, take more 

than 25 times as long as the example strategy, given in section 3.9, to reach a 
decision. If, on completion of the pair-wise tournament, this is found to be the 
case for your strategy, then it will not be eligible to win the tournament. However, 
if it proves to be an effective strategy, we may still discuss it in our reports of the 
tournament. 

 
8. Your strategy cannot access the disk or memory storage of the computer in any 

way beyond the information provided as input. The organizers reserve the right to 
disqualify strategies that are deemed not in the spirit of the contest. 

 
9. Strategies playing EXPLOIT must specify which act to use from their repertoire. 

This act must be present in the individual’s repertoire. If any strategy returns acts 
not in the repertoire then on the assumption that such attempts are mistakes in 
strategy algorithms, provided the strategy submitted sufficiently before the 
deadline (see 11 below) we will attempt to contact the entrant(s) and invite them 
to revise their strategy, provided they do so before the entry deadline expires. 

 
10. Strategies modifying their own behavioural repertoires to update the stored 

payoffs can alter only those payoffs and not the list of acts stored. If any strategy 
attempts to do this, the same rules as in (3) will apply. 

 
11. We reserve the right to edit code for computational efficiency, but we will notify 

entrants if this occurs and they will be given the opportunity to check that the 
operation of their strategies has not been compromised. 

 
12. Strategies must be accompanied by both brief prose description of how they are 

intended to function and, if submitted as computer code, a ‘pseudocode’ version. 
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13. Entrants must be prepared to enter into a reasonable dialogue with the organisers 
to remove ambiguities from the entered strategy for the purposes of coding the 
simulations and improving computation efficiency. We will endeavour to inform 
entrants if their strategies do not function correctly. If a strategy is deemed 
inadmissible prior to the closing date, entrants will be informed forthwith and 
given the opportunity to revise their submission. Strategies deemed inadmissible 
after the closing date will be disqualified. We guarantee to test any strategies 
submitting up to one month before the closing date; we can give no such 
guarantee for strategies submitted after this time, although we will endeavour to 
do so. 

 
14. If a strategy is submitted that, in the opinion of the organisers, is so similar to one 

already submitted as to be reasonably considered identical, then the first 
submission will take precedence and the submitter of the identical strategy will be 
informed that their entry is ineligible. The submitter will however be eligible to 
revise and resubmit their entry, provided that they do so prior to the closing date.  

 
15. Any strategy that, in the opinion of the organisers, has been designed so as in any 

way to recognise and specifically help other entered strategies at their own 
expense will be disqualified and the authors of the strategy will be given no 
further opportunity to enter a modified strategy. This rule is essential to preserve 
the evolutionary validity of the tournament. 

 
16. In the event of a tie, the tied strategies will be submitted to further tests under 

varied simulation conditions as deemed appropriate by the organising committee. 
If the committee judges that the tied strategies do indeed have equal merit, then 
they may decide at their discretion to share the prize between the tied entrants. 

 
17. In the event that the number of submitted strategies renders a complete set of 

pairwise contests computationally unfeasible, we reserve the right to use a 
different system to select which strategies move forward to the melee stage, for 
example by splitting the strategies into randomly assigned groups from which 
winners will be selected to go forward to the melee stage. 

 
18. The winning entrant will receive a cash prize of 10,000 Euros to be presented at a 

conference organised around the tournament at the University of St Andrews in 
2009. The winning entrant will also be invited to co-author a paper reporting on 
the contest, although the organizers reserves the right to produce the paper 
without the entrant’s participation and to judge authorship merits at their 
discretion. 
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Appendix B: Details of tournament entries competing in first stage. 

 
Rank
 
 
  

Strategy Name First stage 
score - 

multiple 
conditions

First stage 
score - 
single 

condition 

Department,  Country

1 copyWhenYoungThenLearn-
WhenPayoffsDrop 

0.75 0.88 Department of Primatology, Max Planck Institute 
for Evolutionary Anthropology, Germany 

2 dynamicAspirationLevel 0.73 0.87 Philosophie, Germany 
3 prospero 0.72 0.86 Department of Physics and Astronomy, Canada. 
4 discountmachine 0.69 0.89 Department of Mathematics and Statistics, 

Canada 
5 intergeneration 0.68 0.85 Faculty of Mathematics and Physics, Czech 

Republic 
6 valueVariance 0.64 0.76 None given, USA 
7 wePreyClan 0.63 0.79 Department of Ecology & Evolutionary Biology, 

USA 
8 rummer 0.59 0.80 Department of Sociology, Netherlands 
9 whenTheGoingGetsToughGet-

Scrounging 
0.54 0.84 Westminster School Sixth Form, UK 

10 livingdog 0.51 0.77 Dipartimento di Studi Sociali, Italy 
11 stabilityObserver 0.50 0.72 None given, Germany 
12 w00t 0.50 0.76 University of California, USA 
13 senescence 0.47 0.79 Biology, Denmark 
14 progressivepeakseeker 0.46 0.77 Mathematics, USA 
15 evchooser 0.46 0.74 Computer Science, USA 
16 keepUp 0.43 0.77 None given, USA 
17 improvedCwpd 0.38 0.75 None given, Sweden 
18 indecisiveJDK 0.38 0.76 None given, USA 
19 halfmax 0.34 0.73 Physics, Netherlands 
20 observe3ThenExploit 0.34 0.78 Computer Science, USA 
21 learnAtTheBeginningThen-

Exploit 
0.34 0.74 Stockholm Resilience Centre, Stockholm 

University, Sweden 
22 weightedContextAware 0.34 0.73 None given, USA 
23 startExploitRecover 0.29 0.73 Centre for the Study of Cultural Evolution, 

Sweden 
24 firstLookThenExploit 0.28 0.74 School of Human Evolution and Social Change, 

USA 
25 oneThirdSocial  0.70 None given, USA 
26 whoDoISee  0.69 None given, Netherlands 
27 whatYouSeeIsWhatYouDo  0.68 Ecole des Hautes Etudes Commerciales, 

Switzerland 
28 aHandfulOfSkills  0.67 College of Engineering, USA 
29 lookahead  0.67 Computer Science, USA 
30 instancebased  0.66 Computer Science, USA 
31 gatherDataAndHillClimb  0.65 None given, USA 
32 breakthroughInnovation  0.65 None given, Canada 
33 learnFromOthers  0.65 None given, Germany 
34 spyNWork  0.64 None given, Germany 
35 waitForSomethingBetter  0.64 None given, USA 
36 followTheMeans  0.64 Center for Adaptive Behavior and Cognition, Max 

Planck Institute for Human Development, 
Germany 

37 sabbath  0.62 Department of Evolutionary Biology, Czech 
Republic 

38 copyMoreWhenYounger  0.62 Computer Science and Artificial Intelligence 
Laboratory, USA 

39 divideAndConquer  0.62 Department of Anthropology, USA 
40 rebelWithoutACause  0.60 Department of Anthropology, USA 
41 adaptiveControl  0.60 Meiji Institute for Advanced Study of 

Mathematical Sciences (MIMS), Japan 
42 cUDOS  0.59 Département des Sciences Biologiques, Canada 
43 hydra  0.59 None given, USA 
44 copyAndSwitch  0.57 L'Institut de recherche pour le développement, 

France 
45 carefullyRecalcDude  0.57 None given, USA 
46 stCoop  0.56 None given, France 
47 itTakesAVillage  0.56 None given, USA 
48 lateAdopter  0.56 Department of Developmental and Comparative 

Psychology, Max Planck Institute for Evolutionary 
Anthropology, Germany 

49 copyWhenConditionsAreStable  0.55 Département des Sciences Biologiques, Canada 
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Rank
 
 
  

Strategy Name First stage 
score - 

multiple 
conditions

First stage 
score - 
single 

condition 

Department,  Country

50 goldberg  0.55 Department of Biological and Environmental 
Sciences, Finland 

51 bestMeanSelect  0.55 None given, Finland 
52 roman5  0.55 None given, Canada 
53 weightedObserver  0.55 Mathematics, Sweden 
54 herculesAtTheCrossroads  0.54 Department of Developmental and Comparative 

Psychology, Max Planck Institute for Evolutionary 
Anthropology, Germany 

55 indexBasedLearningDecision  0.54 Mathematics 
Mathematics, USA 

56 learnFirst  0.53 None given, USA 
57 marmoset  0.52 Département Ecologie, Physiologie & Ethologie, 

France 
58 infantJuvenileMature  0.52 Biological Sciences, USA 
59 julieDecstep25  0.51 Département des Sciences Biologiques, Canada 
60 lowVarianceObserver  0.51 Department of Social and Developmental 

Psychology, UK 
61 estimatePcThenChoose-

Strategy 
 0.50 Mathematics, Sweden 

62 copyWhenPayoffsDecrease-
Plus 

 0.49 Department of Innovation and Environmental 
Sciences,  
Netherlands 

63 staticLearningReduction  0.48 None given, USA 
64 wiseOrObserve  0.47 None given, UK 
65 greatExpectations  0.47 Institute of Cognitive and Evolutionary 

Anthropology, UK 
66 kISAgent  0.47 Faculty of Mathematics and Natural Sciences, 

Netherlands 
67 updateWhatYouHave  0.46 Département des Sciences Biologiques, Canada 
68 learnUntilProfitable  0.45 Institut de Recherches Interdisciplinaires et de 

Développements en Intelligence Artificielle, 
Belgium. 

69 observeEarlyInnovateLittle  0.41 None given, USA 
70 infoScrounger  0.40 Département Ecologie, Physiologie & Ethologie, 

France 
71 weightedSocialLuceChoice  0.37 Psychology, USA 
72 optimalStopping  0.36 Centre for Behavioral Biology, UK 
73 tangle7  0.35 Behavioral Biology, Netherlands. 
74 twiceAsGood  0.33 Biology, USA 
75 goodacts  0.32 Computer Science, USA 
76 magpie  0.31 Centre for Behavior & Evolution, UK 
77 criticalSocialLearner  0.31 Psychology, Italy 
78 knowledgeWeighters  0.31 None given, Portugal 
79 adaptolution  0.30 Wells Cathedral School, UK 
80 innovateBeforeObserveIn-

RadicalEnvironmentalChange 
 0.30 Institut für Sozialwissenschaften – Soziologie, 

Germany 
81 monkeyStudent  0.29 Psychology, Canada 
82 smartObserve  0.29 Computer Science, USA 
83 mainlyObservers  0.28 None given, USA 
84 ratchet  0.28 Psychology, UK 
85 genderedStrategy  0.27 None given, USA 
86 innovateAndObserve  0.26 None given, Netherlands 
87 constantProbability  0.22 School of Electronics and Computer Science, UK
88 piRounds  0.22 Zoology, Sweden 
89 kiss  0.20 Economics, USA 
90 econoSearch  0.19 ETS Ingenieros Industriales, Spain 
91 copyIfBetter  0.16 Anthropology, UK 
92 weightedExploitation  0.15 None given, USA 
93 noImitator  0.15 Management Department, USA 
94 smashNgrab  0.14 Wells Cathedral School, UK 
95 higherLearning  0.13 Biology, Canada 
96 prospector  0.11 None given, USA 
97 aynRandGambit  0.11 None given, Canada 
98 unobservant  0.10 Dept of Medical Education, USA 
99 randomness  0.09 Howe School of Technology Management, USA 
100 copyWhenPayoffsDecrease  0.07 None given, Germany 
101 balancedCopyWhenPayoffs-

Decrease 
 0.06 None given, USA 

102 exploitOneInnovation  0.05 Behavioral Biology, Netherlands 
103 stateDefined  0.04 None given, USA 
104 observeNoThanks  0.02 None given, France 
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Appendix C: Details of tournament entries in second stage. 

2nd 
Stage 
Rank 

Strategy Name 2nd  
Stage 
Score 

Address Strategy description (as submitted by the strategy authors)

1 discountmachine 0.35 Department of 
Mathematics 
and Statistics, 
Queen's 
University, 
Canada 

Our creature does three major things: 

First it estimates/calculates, what we believe to be all the pertinent parameters of the simulation as well 
as a few other quantities that we believe to be useful.  These are P_c, the mean of the payoff 
distribution, the mean of of the observed values, the correlation between observe and exploit values of 
the same action, N_observe, and where applicable the number of data points used to make these 
estimates.  

Second it uses some of these parameters to estimate the expected payoff for performing each action in 
its repertoire.  Once it has a best exploit chosen from its repertoire it compares the value of Exploiting to 
the value of Observing using a geometric discounting scheme based on our estimate of P_c and the 
given probability of death. 

Lastly a machine learned function, takes into account N_observe and the estimates on the reliability of 
observing and P_c to adjust the value of Observing accordingly.  Our creature then chooses whichever 
action has the higher perceived value, Observing or Exploiting. 

As a side note our creature only Innovates when it has an empty repertoire and observe doesn't work, 
which typically is only on the first turn of a simulation. 

2 intergeneration 0.23 Faculty of 
Mathematics 
and Physics, 
Charles 
Unviersity, 
Czech 
Republic 

My main idea is (although it seems not be as good as I expected) that an important information for the 
young is, how much is the "good" payoff (with how much I can be happy). If I have so much or more, I 
would just EXPLOIT until it changes, otherwise I would 8 times exploit and once observe. 

The important trial is that the old could "say" something to the young, by "signaling" something to the 
young. The signal consits of doing an act whose number is divisible by 8. If the fraction is 1,2,3,4 this 
means that "payoff 8 is very good", 5,6,7,8 means "payoff 20 is very good" and 9,10,11,12 means payoff 
40 is very good. 

 

If the old does not have this in his repertoire, he innovates. If he has more than one of these 4 possible 
"symbol" acts, he uses that with highest payoff -- because it is a higher chance that this will diffuse. Even 
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2nd 
Stage 
Rank 

Strategy Name 2nd  
Stage 
Score 

Address Strategy description (as submitted by the strategy authors)

the "opponent" can help spread out this signal, wihout knowing that. 

3 prospero 0.09 Department of 
Physics and 
Astronomy, 
McMaster 
University, 
Canada. 

1. Prospero estimates the mean payoff by taking the mean of all the elements in the 4th row of its 
history. All elements in this row are included in the mean, no matter whether they are actual payoffs 
received from exploiting or payoffs learned by innovating or observing.  

2. Prospero determines the best act in its current repertoire by finding the highest value in the second 
row of MyRepertoire. When Prospero exploits, it always exploits the best act in its repertoire. In the case 
where more than one act in the repertoire has the same best payoff in the second row of MyRepertoire, 
Prospero exploits one of the acts at random from among those acts whose payoff is equal to the best 
payoff.  

3. Prospero compares its last payoff with the mean payoff. If the last payoff is higher than the mean, then 
Prospero is satisfied, and it continues to exploit its best act. Furthermore, Prospero never observes or 
innovates twice in a row, so if the last move was observe or innovate, Prospero always exploits.  

4. If the last move was exploit and the last payoff was less than or equal to the mean payoff, Prospero is 
not satisfied. It then chooses its move randomly with probabilities controlled by two parameters a and b. 
Observe with probability ab, Innovate with probability a(1-b), Exploit current best act with probability (1-
a). I will refer to observe plus innovate together as learning. The parameter a controls the ratio of learn to 
exploit, and the parameter b controls the ratio of observe to innovate, given that a learning move is 
played.  

5. Prospero estimates the probability of change of the environment, pc, from its history. It chooses to 
learn with a low probability when pc is low because it is very likely already exploiting a high-payoff act, so 
it does not want to waste a move on learning. It chooses to learn with a high probability when pc is 
intermediate because it is important to learn in order to keep up with changes in the environment. It 
chooses to learn with a low probability when pc is very high because learning has little value if the payoff 
changes frequently. Prospero counts nsame , the number of times that it exploited the same act as the 
last round and obtained the same payoff as the last round, and ndiff , the number of times that it 
exploited the same act as the last round and obtained a different payoff to the last round.  

6. Prospero estimates the diversity of strategies being used in the population from its previous 
observations. It chooses to observe more frequently (i.e. larger value of b) when its estimate of diversity 
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2nd 
Stage 
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is high, and to innovate more frequently when its estimate of diversity is low. The rationale is that when 
the diversity is high it is best to observe, because the acts being performed by others will be much better 
than random acts, whereas it is not so useful to observe when the diversity is low, because most likely 
you will observe something that is already in the repertoire. Let nrep = number of acts in the current 
repertoire, n0 = number of observations made before (= number of 0’s in row 2 of history), and n1 = 
number of innovations made before (= number of -1’s in row 2 of history). The number of different 
strategies that have been observed is nrep – n1. This is less than n0 when the diversity is low, because 
the same act has been observed more than once. Prospero uses the following rule to set the parameter 
b: nrep+n0-n1 / nrep+n0. In the example history above, nrep = 5, n0 = 5, and n1 = 3. Therefore b = (1+5-
3)/(1+5) = 0.5. In the example history, the number of acts observed on one turn is nobserve = 1, so n0 = 
number of turns on which observe was played. In the case where nobserve > 1, n0 = nobserve × number 
of turns on which observe was played. However, the same formula for b is applicable in either case.  

7. Special rules apply at the beginning of Prospero’s life when it has no strategies in its repertoire. On 
the first turn it always observes, on the grounds that an observed act will have a much higher payoff than 
a randomly innovated act. If no act is observed on the first round (because no individuals exploited), 
Prospero innovates on the second round. This case will only arise at the beginning of the simulation 
when all individuals are started at the same time. Usually a new individual will be born into a population 
of adults, so there will always be something to observe on the first round. 

4 wePreyClan 0.07 Department of 
Ecology & 
Evolutionary 
Biology, 
University of 
California, 
USA 

In the first round (roundsAlive = 0), the strategy observes.  In round two, if no one was observed 
EXPLOITING in round one, the strategy INNOVATES.  If individuals were observed, the strategy 
chooses the best payoff from myRepertoire, and EXPLOITS it.  After the second round, the strategy 
becomes a hybrid of 3 different tactics.  If n=1 (OBSERVE one exploiter at a time), the strategy 
calculates from myHistory the probability that in subsequent rounds the payoff for a given act (either 
OBSERVED, EXPLOITED, or INNOVATED) has changed.  If this probability is >0.6 (and there at least 5 
data points to calculate the probability), the individual chooses the act with the highest payoff from 
myRepertoire and EXPLOITS.  If the probability is <= 0.6, then the strategy looks through myHistory to 
find the greatest recorded payoff (myHistory(4,:)). If the individual has EXPLOITED for the last two 
rounds (t-1, t-2) and the payoff from the last round (t-1) was less than (0.45 * the maximum payoff value 
in myHistory), then the individual will OBSERVE, otherwise it will re-sort myRepertoire and then play the 
top act from there.  
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If n>1, then the strategy calculates from myHistory the mean and median payoff for all acts (either 
OBSERVED, EXPLOITED, or INNOVATED).  Whichever of the two values is greater is set to be MHigh, 
and the lesser is MLow.  The strategy also calculates a correction factor (CF = 1 – 0.2(1 – n/6)).  Every 
10th roundsAlive, if the strategy EXPLOITED in the previous round and the payoff was < MHigh*CF, the 
strategy switches to OBSERVE.  Otherwise, it EXPLOITS the act from myRepertoire with the highest 
payoff.  For the other 9 rounds the strategy will shift from EXPLOIT to OBSERVE if previous payoff was 
< MLow*CF.  Thus, every 10th round the strategy becomes more likely to OBSERVE. 

5 valueVariance 0.06 No affiliation 
given, Texas, 
USA 

Rounds 0 & 1 are obviously Innovate then Observe.  The next paragraph checks to make sure that I 
have at least two values in my repertoire so that I can start calculating the best move.  If it doesn’t have 
two values then it either innovates or observes until it get two values. 

Once we get past that section we do some math to try to determine the distribution of the payoff values.  
ExploitChance gets set to a high value if the highest payoff amount in the repertoire is significantly higher 
than the mean value of payoffs. 

In the end, the strategy assigns a percentage chance from 1-100 for each of the possible actions.  If 
ExploitChance is > 100 then it’s definitely going to exploit that highly valued act. 

When ExploitChance is <100 the left over percentage (aka NonExploitChance) chance is split up 
between Observe and Innovate.  A variable named ObservationMultiplyer is based on the number of 
observations made when an OBSERVE is performed (constrained to 3).  The ObserveChance is 
calculated and then a function adds a little more based on the ObservationMultiplyer. Now that we know 
the percent likelihood of Exploiting and Observing, everything else is innovating.  So, the last section 
finds a random number and determines if it is within ExploitChance, greater than ExploitChance but less 
than ExploitChance plus ObserveChance, or greater. 

6 dynamic-
AspirationLevel 

0.06 Universität 
Bayreuth, 
Philosophie II, 
Germany 

DynamicAspirationLevel determines an aspiration level that is slightly higher than the mean payoff of all 
previous EXPLOIT moves. The difference between the maximun payoff in the  repertoire and the 
aspiration level determines the probability  with which an OBSERVE move is chosen vs. an EXPLOIT 
move.  Furthermore, “DynamicAspirationLevel" uses a 'decaying repertoire'  where old entries and 
potentially invalid entries are values less  than new ones.  The strategy in detail:  The strategy 
"DynamicAspirationLevel" consists of two phases, the first of which lasts until the fourth round of the life 
time of  an individual using this strategy. The second phase last during the remainder of the life time of 
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the individual.    

1. Phase One:   
- Play OBSERVE in the first round alive (when 'roundsAlive = 0')  
- In the second round alive: If the repertoire is still empty (i.e. nothing   could be oserved in the first 
round) play INNOVATE, otherwise chose   the best EXPLOIT move from the repertoire.  
- In the third round alive, play OBSERVE  
- In the fourth round, chose the best move from the repertoire   
 
2. Phase Two     
- determine the mean payoff 'm' from all EXPLOIT moves in the history.  
- determine the maximum payoff 'M' from all EXPLOIT moves in the history. - calculate an aspiration 
level 'a' according to the magic formula:  a := m + (M-m) / 5  
- determine the highest payoff 'ace' in the repertoire.  
- if the highest payoff in the repertoire is greater or equal the   aspiration level ('ace >= a') then set the 
observataion probability 'p'   to 0.01.    Otherwise, if the aspiration level 'a' is greater zero,   let the 
observation probability 'p' be the maximum    of 0.01 and the difference between the aspiration level and 
the highest payoff in the repertoire, divided by the aspiration level '(a-ace)/a'.   Otherwise, if the 
aspiration level is zero, let 'p' be one.     
 - generate a random number 'r' between 0 and 1. If the random number is less   or equal the 
observation probability 'p' chose an OBSERVATION move with a    chance of 99% and an INNOVATE 
move with a chance of 1%.   Always choose INNOVATE if the aspiration level 'a' was not greater zero!   
Otherwise chose the best EXPLOIT move from the repertoire.    
 - Decay the repertoire by subtracting 1 from each payoff value registered   in the repertoire. 
 

7 copyWhenYoung
ThenLearnWhen
PayoffsDrop 

0.06 Max Planck 
Institute for 
Evolutionary 
Anthropology, 
Department of 
Primatology, 
Germany 

At the beginning of their life individuals always observe two times. In this way the individual gets good 
knowledge about what is worth to exploit. The second observe accounts for the problem that observing 
is error prone and that the environment maybe just changed. Afterwards individuals always exploit the 
trait with the highest known pay-off as long as the highest known pay-off is larger then 80 % of the 
average of all pay-offs that were ever experienced (exploited, observed and innovated). In this way the 
individuals tend to exploit only traits with high payoffs without getting too choosy. In case the highest 
known payoff drops too strongly individuals first always innovate, afterwards they always observe once 



 
 

 51

2nd 
Stage 
Rank 

Strategy Name 2nd  
Stage 
Score 

Address Strategy description (as submitted by the strategy authors)

and then randomly decide to either innovate or observe. To always innovate first is done because the 
environment just changed and in this case observing might provide outdated information. In the next time 
step this is not the case anymore, therefore the individuals should observe. 

8 livingdog 0.04 Dipartimento di 
Studi Sociali, 
Università di 
Brescia, Italy 

Living Dog is a probabilistic strategy based on two parameters: p and q, where p is the probability of 
playing EXPLOIT (vs. INNOVATE or OBSERVE) and q is the probability of playing OBSERVE (vs. 
INNOVATE). The parameter values are defined depending on the agent repertoire and history. More 
specifically, p is computed as a fucntion of the differences among the sorted payoffs included in the 
agent repertoire. The underlying assumption is that a jump between two payoffs much larger than the 
median one implies that the agent already knows an act associated with a high payoff. The value of q 
depends instead on the relative value of the average earnings when the agent exploited an act learned 
using INNOVATE and of  the average earnings when the agent exploited an act learned using 
OBSERVE.  

The function uses a two step decision making process:  

1) a random extraction based on p determines whether the agent will EXPLOIT its higher act or try to 
increment its repertoire;  

2) if it does not EXPLOIT, a random extraction based on q determines whether it will OBSERVE or 
INNOVATE (actually, in order to increase the function speed,  the value of q is computed only when the 
1st step does not return an EXPLOIT decision).  

9 rummer 0.02 Department of 
Sociology / 
ICS, Utrecht 
University, 
Netherlands 

The main idea behind RUMmer is that successful behavior in an uncertain environment, and in the 
presence of other "competitors", must be adaptive. A strategy must be able to adapt to different 
environmental conditions, for example, how hard it is to attain relatively high rewards, how fast is the 
environment changing. The relative returns on innovating, observing others, and exploiting what you 
already know depend also on the strategies of others. They might be asocial innovators, but perhaps 
conformist social learners. Therefore, in addition to the properties of the environment, we conjecture that 
a successful strategy should also be able to adapt to the types of strategies that its competitors use. 

 

RUMmer tries to bring these considerations together by using propensities for possible moves: 
INNOVATE, OBSERVE, or EXPLOIT. Propensities are calculated from agent's experience of whether 
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and to what extent each of these moves was beneficial. An agent should innovate more often, the higher 
the benefits are of the acts he learned by innovating. Analogously, an agent should observe more often if 
benefits of observed acts are high. Another important aspect of RUMmer is that it is probabilistic. 
Calculated propensities determine the probabilities of playing each of the three moves in every round. 
We believe that randomizing the move in every round is an advantageous way to behave in a 
probabilistic (uncertain) environment. Deterministic strategies may run into trouble as in every round 
some aspect of the environment is likely to change. Thus, beneficial options calculated from past rounds 
may not be beneficial later on. 

Finally, RUMmer implements an idea that it can only exploit its knowledge during exploitation rounds. 
Innovations and observations have an "opportunity cost" equal to the payoff that could have been earned 
in that round. Thus, the benefits of innovation and observation are reduced with the actual likelihood of 
exploitation. 

The basic mechanism is the following. RUMmer INNOVATEs in the first round, EXPLOITs in the second, 
and OBSERVEs in the third. From the fourth round on,  the following quantities are calculated in every 
round: 

1. Highest known payoff based on myRepertoire (hexp) 2. Mean payoff of innovated actions based on 
myHistory (minn) 3. Mean payoff of observed actions based on myHistory (mobs) 4. Proportion of rounds 
in which played EXPLOIT (pexp) 

Additionally, let denom be equal to: 

exp(pexp*minn ) + exp( (pexp*mobs ) + exp(hexp) 

Then choose one of the three possible moves with the following probabilities: P(INNOVATE) = 
exp(pexp*minn ) / denom P(OBSERVE) = exp(pexp*mobs) / denom P(EXPLOIT) = exp(hexp) / denom 

 

Playing EXPLOIT is choosing the action with the highest utility in myRepertoire. 

10 whenTheGoing-
GetsToughGetS
crounging 

0.02 Westminster 
School Sixth 
Form, UK 

In general, after observing twice to learn (at least) 2 acts, the strategy exploits 4 times in order to get 
some early payoff and decide if Pc is low or high. If it sees an act’s payoff change in these 4 moves it 
decides Pc is high, and observes on move 7 to indicate this decision to itself in future. Otherwise it 
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exploits. 

From move 8 on it looks at move 7 to remind itself whether it decided Pc was low or high. If it decided Pc 
was high it exploits the highest payoff act unless this is less than the mean of payoffs it has seen, in 
which case it exploits the act it hasn’t used for longest. 

If it decided Pc was low it exploits highest unless the last move was an exploit with a payoff lower than 
its mean lifetime payoff. In this case it observes. It will also always observe on move 8. If its last move 
was an observe it checks to see if the act that was observed was the same as the act exploited on the 
round before the observe. If this is the case it innovates, since it is clear that more acts need to get into 
circulation. 

There are two exceptions to this mode of behavior. Firstly, some small changes are made to the opening 
made if the Observe on move 1 fails due to nobody exploiting in the previous turn. Secondly, if Nobserve 
is found to be greater than 2, move 7 becomes an exploit even if it decides Pc is high. The strategy will 
then continue to act in the mode which it does normally if it had in fact decided that Pc were low. 

“Nobserve greater than 2”, both here and in the pseudocode, means strictly greater than 2, not greater 
than or equal to 2. 

 

 


